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Abstract
We study the correspondence between phase-space localization of quantum
(quasi-)energy eigenstates and classical correlation decay, given by Ruelle–
Pollicott resonances of the Frobenius–Perron operator. It will be shown that
scarred (quasi-)energy eigenstates are correlated: pairs of eigenstates strongly
overlap in phase space (scar in same phase-space regions) if the difference
of their eigenenergies is close to the phase of a leading classical resonance.
Phase-space localization of quantum states will be measured by L2 norms of
their Husimi functions.

PACS numbers: 05.45.−a, 03.65.Sq

1. Introduction

Schnirelman’s theorem [1] and Berry’s physical reasoning predict that quantum energy
eigenfunctions (Wigner or Husimi representation [2, 3]) of systems whose classical counterpart
is chaotic are uniformly distributed on the energy shell. Heller, however, has shown that
exceptional quantum eigenfunctions are localized (scarred) on hyperbolic periodic orbits [4].
Scars are explained in several representations such as the Husimi (Heller [4, 5]), Wigner
(Berry [6]) or coordinate representation (Bogomolny [7]). Loosely speaking, a scar is an
enhancement of the wavefunction amplitude (as compared to predictions of random-matrix
theory) in the vicinity of a periodic orbit or along its invariant manifolds [8–11]. All theories
are based on the linearization around the periodic orbit in question, where semiclassical
predictions of scar strengths depend only on the Lyapunov exponent of the orbit. In the
Husimi representation, it is easy to see that scarring is a localization phenomenon. In contrast
to foregoing works, we do not consider single periodic orbits or single eigenfunctions, but we
investigate localization properties of the whole set of eigenfunctions of the system, restricting
our studies to finite-dimensional Hilbert spaces. To this purpose, we introduce squared L2

norms of Husimi eigenfunctions as a measure of phase-space localization [12]. As will be
shown in the following, this measure proves amenable to semiclassical considerations.

The classical dynamics of chaotic systems can be described by the time evolution of phase-
space density functions. The corresponding propagator is the Frobenius–Perron operator P
[13–15]. The poles of the resolvent of P are called Ruelle–Pollicott resonances which
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coincide with decay rates of classical correlation functions [16–19]. The quantum–classical
correspondence, in particular the influence of Ruelle–Pollicott resonances on the quantum
energy spectrum, is still a topic of interest [20–23]. We show that phase-space overlaps
of energy eigenstates turn out Lorentz distributed with respect to the differences of their
eigenenergies. The Lorentzians are determined by Ruelle–Pollicott resonances. In other
words, the probability that two eigenstates strongly overlap becomes high if the difference
of their eigenenergies coincides with the position where the Lorentzian is peaked. On the
other hand, if a pair of eigenstates strongly overlaps (much more than random-matrix theory
predicts), each of them must be localized, i.e. scarred, in the same phase-space regions; we
shall see probability concentrated near periodic points and their stable and unstable manifolds.

Here we consider systems with a compact two-dimensional phase space, in particular the
unit sphere, whereby the Hilbert-space dimension of the quantum counterpart becomes finite.
Periodic driving destroys integrability in general. Moreover, a stroboscopic description leads
to a Hamilton map or a Floquet operator in the classical or quantum case, respectively. A well
known representative of such a dynamics is the kicked top [24–26].

2. Kicked top

The dynamics of the kicked top is described by a stroboscopic map of an angular momentum
vector whose length is conserved. For such dynamics the phase spaces are unit spheres.
The classical time evolution is usually described in the ‘Hamilton picture’, whereby the
stroboscopic consideration leads to a Hamilton map which describes a trajectory after each
period,

(q ′, p′) = M(q, p). (1)

Here the primes denote the final position q and momentum p coordinates. On the sphere the
canonical phase-space coordinates are given by the azimuthal and polar angles as q = ϕ and
p = cos θ .

The quantum time evolution in the Schrödinger picture is generated by a Floquet operator
F which is built by the components of an angular momentum operator J; we choose it as a
sequence of rotations about the y- and z-axes followed by a nonlinear torsion about the z-axis,

F = Tz(τ )Rz(α)Ry(β) Tz(τ ) = e−i τ
N
J 2
z Rz(α) = e−iαJz Ry(β) = e−iβJy (2)

where τ is called the torsion strength and α and β are rotation angles. The dimension of the
quantum Hilbert space is N = 2j + 1, where j is the quantum angular momentum formally
replacing the inverse of Planck’s constant, h̄−1 (h̄ = 1 in this paper). Since F is unitary,
it has N orthogonal eigenstates with unimodular eigenvalues characterized by eigenphases
(quasi-eigenenergies) as Fn|φi〉 = exp(−inφi)|φi〉.

The classical counterpart has in general a mixed phase space. Choosing the parameters
as α = β = 1 and τ = 10, the dynamics becomes strongly chaotic. For j = 200 which we
use for numerical results stable islands are not resolved by the Planck cell of size 4π

N
, whereby

the dynamics looks, from a quantum point of view, effectively hyperbolic.
In order to compare the results of the kicked top with those of random-matrix theory

(RMT), here we discuss the symmetries of the system. The dynamics proves invariant under
nonconventional time reversal. In terms of random-matrix theory, the Floquet matrix belongs
to the circular orthogonal ensemble (COE), where the coefficients of the eigenvectors can be
chosen real in a suitable basis [27, 28]. Here we expand the Floquet operator in the basis of
eigenstates of the z-component of the angular momentum operator, Jz|jm〉 = m|jm〉. By a
unitary transformation given by a simple rotation, F ′ = R̃F R̃†, the Floquet matrix becomes
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symmetric, F ′T = F ′, where the eigenvectors become real. Here T denotes transposition.
This is an important property, since the L2 norm of a Husimi function, which we will use as
a measure of phase-space localization, is invariant under rotations. Therefore, eigenvectors
of the kicked top must be compared to real random vectors. The rotation is of the form
R̃ = Rz

(
β

2

)
Ry
(−π

2

)
Rz
(−π

2

)
, whereby the transformed Floquet matrix becomes

F ′ = Rz

(
β

2

)
Ry

(
−π

2

)
Rz

(
−π

2

)
Tz(τ )Rz(α)Ry(β)Rz

(π
2

)
Ry

(π
2

)
Rz

(
−β

2

)
. (3)

After commutation of the rotation Rz
(−π

2

)
with the torsion, the product

Rz

(
−π

2

)
Ry(β)Rz

(π
2

)
= Ry

(π
2

)
Rz(β)Ry

(
−π

2

)
(4)

is a rotation about the x-axis. Using relation (4) in (3), the transformed Floquet matrix finally
becomes

F ′ =
(
Ry

(π
2

)
Rz

(
β

2

))T
Tz(τ )Rz(α)Ry

(π
2

)
Rz

(
β

2

)
(5)

which is obviously symmetric.

3. Frobenius–Perron operator

Another way to describe classical time evolution is the ‘Liouville picture’, as the propagation
of density in phase space. The corresponding propagator, the Frobenius–Perron operator P ,
is defined through the Hamilton map as

fn(q, p) = Pnf0(q, p) = f0(M−n(q, p)) =
∫

dq ′ dp′f0(q
′, p′)δ2((q ′, p′)− M−n(q, p))

(6)

where f (q, p) denotes an arbitrary phase-space density function. Note that the Hamilton map
is invertible and area preserving. An expectation value of a classical observable is given by
the phase-space integral

〈A〉 =
∫

dq dpA(q, p)f (q, p) ≡ (A|f ) (7)

where we have introduced the Dirac notation. To avoid confusion with quantum wavefunctions,
here we use round brackets. Note that this notation is generally to be read as a linear functional,
where the density function f belongs to the Banach space L1 and the observable A belongs
to the dual space L∞. Furthermore, we suppose that both functions are real, otherwise A is
complex conjugate in the integral notation (7).

For classically chaotic systems (we assume purely hyperbolic dynamics), correlations of
observables decay exponentially in time. Due to ergodicity, the time correlation can be written
by a phase-space integral,

CAB(n) = (A(n)B(0)|ρi)− (A|ρi)(B|ρi) (8)

where the time dependence of the observables must be read as A(n) = A(q(n), p(n)). Here
ρi denotes the stationary (invariant) density with Pρi = ρi , i.e. the constant on the sphere.
The associated stationary eigenvalue is 1 and ensures that no probability gets lost, i.e. it
preserves the L1 norm of a density function. We may replace the observable B by an initial
density function f and further we assume that (A|ρi) = 0, then the correlation function can be
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written in terms of the Frobenius–Perron operator. Finally, we introduce the Ruelle–Pollicott
resonances λν which are to identify decay rates,

C(n) = (A|Pn|f ) =
∑
ν

aνλ
n
ν (9)

where aν denote the coefficients of the resonance expansion. Here we assume the simplest
case that resonances appear with multiplicity 1, otherwise the spectral decomposition of the
Frobenius–Perron operator would be given by the so-called Jordan block structure, whereby
the expansion on the rhs would become more complicated. It should be remarked that the
decay rate is precisely given by the logarithm of λν which is more convenient to consider in
continuous-time dynamics. While λν are located inside the unit circle on the complex plane,
the logarithms of λν are customarily chosen to be in the lower half plane. Due to the fact that
the Frobenius–Perron operator preserves the positivity of density functions, the resonances are
real or appear as complex pairs. The trace of the Frobenius–Perron operator defined through
TrPn = ∫

dq dp δ2((q, p) − Mn(q, p)), i.e. setting image and original points in (6) equal,
becomes

TrPn = 1 +
∑
ν

λnν (10)

in terms of the resonances. Here we have separated the stationary eigenvalue 1 from the
summation of the resonances. We should carefully distinguish between forward and backward
time evolution, since we do not expect an increase of correlations for the backward time
propagation. It has been shown that the backward time Frobenius–Perron operator has the
same resonances.

Ruelle–Pollicott resonances are defined as the poles of the resolvent of P ,

R(z) = 1

z− P . (11)

The corresponding ‘eigenfunctions’ are not square-integrable functions like those of the
quantum propagator, but distributions. It is known that unstable manifolds of periodic orbits
function as supports of these singular eigenfunctions. For the backward time evolution, stable
and unstable manifolds exchange their roles.

4. Approximate resonances

Supported by arguments of perturbation theory, Weber et al [29, 30] have shown that classical
Ruelle–Pollicott resonances of the Frobenius–Perron operator can be found by investigating the
propagator restricted on different phase-space resolutions. Moreover, one finds approximate
eigenfunctions which scar along unstable manifolds. This important result will be useful for
the comparison of classical and quantum eigenfunctions.

We restrict our considerations on the Hilbert space of square-integrable functions L2.
For the system considered, the phase space is the unit sphere, where it becomes convenient
to use the basis of spherical harmonics. The Frobenius–Perron operator becomes an infinite
unitary matrix whose unimodular spectrum can be separated into a discrete part for integrable
components and a continuous part for hyperbolic components of the dynamics. Truncation of
anM ×M matrix corresponding to a restricted phase-space resolution destroys unitarity. The
spectrum becomes discrete and the eigenvalues are inside or on the unit circle. As M increases
some eigenvalues prove M-independent; these are said to be stabilized. Stabilized eigenvalues
reflect spectral properties of the Frobenius–Perron operator. They are (almost) unimodular
for integrable components or stable islands. In contrast, eigenvalues which are stabilized
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Figure 1. (a) Eigenvalues of the truncated Frobenius–Perron matrix (lmax = 32). (b) Eigenvalue
density computed from Frobenius–Perron matrices with lmax = 20, 21, . . . , 70. The centre of the
disc is not shown, because of the increasing density at the origin (see (a)).

Table 1. Eigenvalues of the truncated Frobenius–Perron matrix (left column) which represent the
expected resonance positions (right columns).

No Re λ Im λ Re λν Im λν

1 0.811 497 0 0.81 0
2 0.748 029 0 0.75 0
3 −0.734 887 0 −0.745 0
4 0.003 495 −0.733 015 0 −0.75
5 0.003 495 0.733 015 0 0.75
6 0.672 874 0 0.67 0
7 −0.669 930 0 −0.68 0
8 −0.611 201 0 −0.63 0

inside the unit circle reflect Ruelle–Pollicott resonances. Non-stabilized eigenvalues have
typically smaller moduli than the stabilized ones. They change their positions as M increases
until they reach positions of resonances where they can settle for good. We also know that
the eigenfunctions corresponding to stabilized eigenvalues are localized either on tori for
unimodular eigenvalues or around unstable manifolds for non-unimodular eigenvalues. We
expect that the latter eigenfunctions converge weakly to singular resonance ‘eigenfunctions’.
We will call them approximate resonance eigenfunctions in what follows.

Figure 1(a) shows the eigenvalues of the truncated Frobenius–Perron matrix in the
complex plane. Here the dimension is M = (lmax + 1)2, where lmax is the maximal total
angular momentum of the spherical harmonics in which the density functions are expanded.
In figure 1(b) we see a greyscale shaded plot of the eigenvalue density calculated from truncated
matrices (lmax = 20, 21, . . . , 70). Dark spots corresponding to large amplitudes of the density
indicate resonance positions, since resolution-independent eigenvalues greatly increase the
density through accumulation. A comparison of both shows that some eigenvalues in (a)
reflect resonance positions (see also table 1). In figure 2(a) the modulus of the approximate
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Figure 2. (a) Grey-shade coded phase-space plot of the modulus of the approximate resonance
eigenfunction (lmax = 32) from λ ≈ −i0.75 (number 4 in table 1). (b) Unstable manifold of a
weakly unstable period-4 orbit (spots) supporting the resonance eigenfunction. (c) Approximate
resonance eigenfunction of backward time evolution from the same resonance as in (a). (d ) Stable
manifold of the same orbit as in (b).

eigenfunction is plotted in phase space, where the dark regions belong to large moduli of
the complex-valued function. The comparison with the unstable manifolds (figure 2(b)) of
a weakly unstable period-4 orbit shows that the approximate eigenfunction scars along these
manifolds. In figures 2(c) and (d ) we see the scarring of the eigenfunction of backward time
propagation (same resonance as in (a)) along the stable manifolds.

5. Coherent-state representation

To represent quantum operators most suitable to compare with classical observables it is
convenient to start from coherent states. For the SU(2) group coherent states can be generated
by a rotation of the state |j,m = j 〉 as |θ, ϕ〉 = R(θ, ϕ)|jj 〉. In the |jm〉 basis these coherent
states are given by

|θ, ϕ〉 =
(

1 +

(
tan

θ

2

)2
)−j j∑

m=−j

√(
2j

j −m

)(
tan

θ

2
eiϕ

)j−m
|jm〉. (12)

Since the set of coherent states is not linearly independent, there are several methods of
describing quantum operators with coherent states [31–33]. On the one hand, one can use
the so-called P function, defined as the weight of coherent-state projectors in the continuous
mixture

A = N

4π

∫
d�PA(θ, ϕ)|θ, ϕ〉〈θ, ϕ|. (13)
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The integral is over the unit sphere, where d� = dϕ dθ sin θ . On the other, we have
the so-called Q function, the coherent-state expectation value of an operator, QA(θ, ϕ) =
〈θ, ϕ|A|θ, ϕ〉. It is important that Q is a smooth function on phase space, while P can strongly
oscillate, particularly in the shortest wavelengths. However, in contrast to the coherent states
of Weyl groups, P functions always exist. Both functions can be expanded in terms of spherical
harmonics [34],

QA(θ, ϕ) =
2j∑
l=0

l∑
m=−l

qlm(A)Y
m
l (θ, ϕ)

PA(θ, ϕ) =
2j∑
l=0

l∑
m=−l

plm(A)Y
m
l (θ, ϕ),

(14)

where the summation is finite l � 2j . The Hilbert space of phase-space functions must not be
confused with the Hilbert space of quantum wavefunctions; we therefore use parentheses for
the scalar product already introduced in (7), (f |g) = ∫

d�f ∗(θ, ϕ)g(θ, ϕ). Although the P
functions tend to oscillate more strongly than the Q functions, the expansion coefficients of the
P and Q functions corresponding to the same operator converge to one another in the classical
limit, plm(A)−→

N→∞
qlm(A) for fixed l, m. It is easy to see that the trace of an operator product

can be written as the scalar product of P and Q as TrA†B = N
4π (PA|QB). In particular, if the

set {|φk〉} of wavefunctions forms an orthogonal basis of the quantum Hilbert space, then the
P and Q functions of ket–bras Pik ≡ P|φi〉〈φk | and Qik ≡ Q|φi〉〈φk | generate biorthonormal sets
in the Hilbert space of phase-space functions

N

4π
(Pik|Qi′k′) = Tr(|φk〉〈φi‖φi′ 〉〈φk′ |) = δkk′δii′ . (15)

The Q function of a density operator Qρ is also called a Husimi function. If the density
operator is a projector of form |ψ〉〈ψ|, the corresponding Husimi function is a phase-space
representation of a quantum wavefunction. We call theQik ≡ Q|φi〉〈φk | Husimi eigenfunctions
if |φi〉 denote Floquet eigenstates. This notation becomes obvious in the next section.
We further distinguish between diagonal Husimi eigenfunctions Qkk and skew ones Qik

with i 
= k.

6. Husimi propagator

The Husimi propagator F is defined through the time evolution of a quantum density operator
ρ as

Qρ(n)(θ, ϕ) = 〈θ, ϕ|Fnρ(0)(F †)n|θ, ϕ〉 = FnQρ(0)(θ, ϕ). (16)

Using the Floquet eigenstates, F |φi〉 = e−iφi |φi〉, the Husimi eigenfunctions are easily
calculated as Qik ≡ 〈θ, ϕ|φi〉〈φk|θ, ϕ〉. The Husimi propagator thus has N2 unimodular
eigenvalues whose phases are differences of the Floquet eigenphases. There is an N-fold
degeneracy of the eigenvalue 1 corresponding to the diagonal Husimi eigenfunctions Qkk

which are real and normalized as
∫

d�Qkk = 4π/N . All other (skew) Husimi eigenfunctions
with i 
= k are complex and their phase-space integral vanishes. In the basis of spherical
harmonics, the Husimi propagator becomes anN2 ×N2 matrix (Husimi matrix). The diagonal
representation of the Husimi propagator is simply given as

Fn = N

4π

2j∑
i=0

2j∑
k=0

|Qik) e−in(φi−φk)(Pik|. (17)
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The Husimi spectral density is identified as the density–density correlation function with
respect to the Floquet eigenphases,

C(ω) =
∫ 2π

0
dφ ρ(ω + φ)ρ(φ) =

∑
ik

δ(ω − (φi − φk)) (18)

where ρ(φ) = ∑
k δ(φ − φk). Some authors prefer the normalized density ρ̃(φ) =

N−1 ∑
k δ(φ − φk).

7. Scars in the coherent-state representation

The phenomenon of scarring is well described in the coherent-state representation [5, 11]. To
see what happens when quantum energy eigenstates scar along a periodic orbit, it is convenient
to consider statistical properties of the coefficients 〈θ, ϕ|φk〉. Here |θ, ϕ〉 denotes a coherent
state (or an arbitrary Gaussian wavepacket) centred on a periodic point. A well known property
is the inverse participation ratio (IPR) of the coherent state with respect to the eigenstates,

IPR{|φk〉}(|θ, ϕ〉) =
N∑
k=1

|〈θ, ϕ|φk〉|4. (19)

RMT predicts IPR ≈ 2/N . For a weakly unstable periodic orbit, scar theory predicts an
enhancement of the inverse participation ratio as IPR ∝ λ−1, where 0 < λ � 1 is the positive
Lyapunov exponent of the orbit. Loosely speaking, due to the enhanced IPR some eigenstates
have larger amplitudes |〈θ, ϕ|φk〉|2 than RMT predicts (scarred), while others have small
amplitudes (also called anti-scarred), since the normalization

∑
k |〈θ, ϕ|φk〉|2 = 1 must be

fulfilled. It seems that scar theory invalidates predictions of RMT or Schnirelman’s theorem,
but it is important to note that the phase-space area affected by scarring shrinks as N goes to
infinity. Therefore, it is correct to say that near periodic points scars persist in the semiclassical
limit N → ∞.

Instead of a single phase-space point, here we consider the entire phase space, i.e. the
Husimi function of an eigenstate. Introducing a measure for the localization of a Husimi
function, this measure is related to the scar strength of the eigenstate. Due to the foregoing
statement, we expect that such localization effects caused by scars vanish in the semiclassical
limit.

8. L2 norms of Husimi eigenfunctions

The squared L2 norm of a Husimi function is an adequate measure for localization and
therefore an indicator for finding scarred eigenfunctions. The squared L2 norm of a diagonal
Husimi eigenfunction,

‖Qkk‖2 =
∫

d�|〈θ, ϕ|φk〉|4 (20)

is the IPR with respect to coherent states (phase-space distribution). It becomes large if
the Husimi function is strongly localized in phase space, say scarred on periodic orbits. On
the other hand, the squared L2 norm of a skew Husimi eigenfunction can be understood as the
overlap of two diagonal Husimi functions on phase space,∫

d�|Qik|2 =
∫

d�|〈θ, ϕ|φi〉|2|〈θ, ϕ|φk〉|2. (21)

From Schwarz’ inequality,

‖Qik‖2 � ‖Qii‖‖Qkk‖ (22)



Classical resonances and quantum scarring 6387

it becomes obvious that for large values of ‖Qik‖2, both diagonal Husimi eigenfunctions must
be localized in the same phase-space regions.

We illustrate two examples. A constant function on the sphere is, of course, a uniformly
distributed function. But note that it is not a Husimi eigenfunction, since the corresponding
density operator is of the form ρ = 1

N
1. Using the normalization N

4π

∫
d�Qρ = 1, the Husimi

function becomes 1
N

. For the squared L2 norm, we find

‖Qρ‖2 = 4π

N2
(23)

for a uniform function. In comparison, the random-matrix averaged squared L2 norms of
diagonal Husimi eigenfunctions are larger by a factor 2 (see section 9), which can be explained
by quantum fluctuations. A most strongly localized Husimi function, in contrast, corresponds
to a density operator which is a coherent-state projector. Due to the invariance under rotations,
the L2 norm is the same for all coherent-state Husimi functions. Using the coherent-state
projector |jj 〉〈jj | and (28), one easily finds for the squared L2 norm

‖Q|jj〉〈jj |‖2 = 2π

N
(24)

for a strongly localized Husimi function. It becomes obvious that squared L2 norms of most
strongly localized and uniformly distributed Husimi functions differ by a factor of order N.

Here we show the calculation of the L2 norm from vector coefficients in the |jm〉 basis(
ckm = 〈jm|φk〉

)
. Introducing the completeness of unity in terms of the angular momentum

states, 1 = ∑j

m=−j |jm〉〈jm|, the L2 norm of a skew Husimi eigenfunction becomes a
four-fold sum,∫

d� |〈θ, ϕ|φi〉〈φk |θ, ϕ〉|2 =
∑
m1 ···m4

cim1

(
cim2

)∗
ckm3

(
ckm4

)∗
×
∫

d� 〈θ, ϕ|jm1〉〈jm2|θ, ϕ〉〈θ, ϕ|jm3〉〈jm4|θ, ϕ〉. (25)

From definition (12) of the coherent states we find, using the relations tan θ
2 = 1−cos θ

sin θ = sin θ
1+cos θ

for 0 � θ � π ,

〈jm|θ, ϕ〉 = 2−j
√(

2j

j −m

)
(1 − cos θ)

j−m
2 (1 + cos θ)

j+m
2 ei(j−m)ϕ. (26)

After a few further steps the phase-space integral
∫

d� = ∫ π
0 dθ sin θ

∫ 2π
0 dϕ leads to a

Kronecker δ and to a beta function [35] for the ϕ- and θ -dependent parts, respectively. We
thus obtain for the coefficients of the summation (25)∫

d�〈θ, ϕ|jm1〉〈jm2|θ, ϕ〉〈θ, ϕ|jm3〉〈jm4|θ, ϕ〉

= 4π
�
(

4j−∑mi
2 + 1

)
�
(

4j+
∑
mi

2 + 1
)

�(4j + 2)

× δ(m1 −m2 +m3 −m4)

√(
2j

j −m1

)(
2j

j −m2

)(
2j

j −m3

)(
2j

j −m4

)
. (27)
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We make use of the argument of the Kronecker δ and get for the L2 norm

∫
d� |〈θ, ϕ|φi〉〈φk |θ, ϕ〉|2 = 4π

∑
m1···m4

(2j −m1 −m3)!(2j +m1 +m3)!

(4j + 1)!

×
√(

2j

j −m1

)(
2j

j −m2

)(
2j

j −m3

)(
2j

j −m4

)

× δ(m1 −m2 +m3 −m4)c
i
m1

(
cim2

)∗
ckm3

(
ckm4

)∗
. (28)

This formula will be used for the calculation of Husimi L2 norms of random vectors in the
next section.

9. Random-matrix average of L2 norms

In order to compare the results of the kicked top with those of random-matrix theory, we
now consider diagonal Husimi eigenfunctions and replace the coefficients by real or complex
random numbers due to the orthogonal (COE) or unitary ensemble (CUE), respectively [36].
It is easy to see from (20) and (21) that the L2 norm of a Husimi function is invariant
under rotations. As has been shown in section 2, the eigenvectors of the kicked top must
be compared to real random vectors. The only correlation between the coefficients is the
normalization of the vector,

∑
m |cm|2 = 1 (we drop the upper index in the following).

Therefore we neglect all terms containing random phases and keep the contributing terms with
m1 = m2 ∧m3 = m4 orm1 = m4 ∧m2 = m3. By the choice of real coefficients, one has the
further possibilitym1 = m3 ∧m2 = m4. We may abbreviate the coefficients of the summation
(27) as f (m1, . . . ,m4) for a moment to find the contributing terms,

〈‖Qkk‖2〉 =
∑
m1 ···m4

f (m1, . . . ,m4)δ(m1 −m2 +m3 −m4)
〈
cm1c

∗
m2
cm3c

∗
m4

〉
=

∑
m1 ···m4

f (m1, . . . ,m4)δ(m1 −m2 +m3 −m4)

× ([
δm1m2δm3m4

(
1 − δm1m3

)
+ δm1m4δm2m3

(
1 − δm1m3

)
+
{
δm1m3δm2m4

(
1 − δm1m2

)}]〈|cm|2|cn|2〉 + δ3
mimk

〈|cm|4〉). (29)

The diagonal part δ3
mimk

= δm1m2δm2m3δm3m4 is separated, since there appears the average of
|cm|4. Due to the symmetry of f (m1, . . . ,m4) the first two terms in the bracket give the same
contribution; to this end, one executes the summations over m2 and m4. The contribution
coming from real coefficients {· · ·} vanishes; here one sums over m3 and m4. Finally, one
finds for the averaged L2 norm

〈‖Qkk‖2〉 = 4π

4j + 1

[
2

j∑
m,n=−j
m
=n

(
4j

2j −m− n

)−1( 2j

j −m

)(
2j

j − n

)
〈|cm|2|cn|2〉

+
j∑

m=−j

(
4j

2j − 2m

)−1( 2j

j −m

)2

〈|cm|4〉
]
. (30)
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Next we need the averages of products,

〈|cm|2|cn|2〉 =
{ 1
N(N+1) , CUE

1
N(N+2) , COE

(31)

〈|cm|4〉 =
{ 2
N(N+1) , CUE

3
N(N+2) , COE.

(32)

The averages are easily calculated from the probability distribution given in [36]. It should be
remarked here that semiclassical corrections are of next to leading order of N−1. Therefore
we do not neglect this order in our RMT results.

Let us consider first the CUE. Since 〈|cm|4〉 = 2〈|cm|2|cn|2〉, we can complete the
summations over the diagonal (m = n) and off-diagonal (m 
= n) parts. Thus we have
for the CUE

〈‖Qkk‖2〉 = 8π

N(N + 1)

1

4j + 1

j∑
m,n=−j

(
4j

2j −m− n

)−1( 2j

j −m

)(
2j

j − n

)
. (33)

It might not be easy to see that this results in 〈‖Qkk‖2〉 = 8π
N(N+1) . To this end, we present an

alternative way to calculate the averaged L2 norm which is unfortunately not applicable for
the COE [12]. An arbitrary complex random vector can be written as |ψ〉 = U |jj 〉, where
U is a unitary random matrix. A coherent state is generated through a rotation operator as
|θ, ϕ〉 = R(θ, ϕ)|jj 〉. We thus have 〈θ, ϕ|ψ〉 = 〈jj |R†U |jj 〉. The productR†U = Ũ defines
a new unitary random matrix, where the Haar measure dµ(Ũ) = dµ(U) remains unchanged.
Therefore the averaged L2 norm becomes

〈‖Qkk‖2〉 =
∫

dµ(U)
∫

d�|〈jj |R†U |jj 〉|4

=
∫

d�
∫

dµ(Ũ)|〈jj |Ũ |jj 〉|4

= 4π〈|cm|4〉. (34)

Note that for the COE, in contrast, one deals with real vectors which generally become complex
after rotating.

For the COE we again complete the diagonal and off-diagonal summations in (30),
whereby a further contribution remains, because of the factor 3 of the fourth moment (32),

4π

4j + 1

j∑
m=−j

(
4j

2j − 2m

)−1( 2j

j −m

)2 1

N(N + 2)
= (4j (2j)!)2

(4j + 1)(4j)!

4π

N(N + 2)
. (35)

The latter equation can be calculated as follows1. We rewrite

j∑
m=−j

(
4j

2j − 2m

)−1( 2j

j −m

)2

= (2j)!2

(4j)!

2j∑
k=0

(
2k

k

)(
4j − 2k

2j − k

)
(36)

with k = m + j . We now show that
n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
= 4n. (37)

1 The author thanks Petr Braun for showing this identity.
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The generating function of
(2k
k

)
is

1√
1 − 4x

=
∞∑
k=0

(
2k

k

)
xk (38)

which is easily seen from Taylor expansion,

1

k!

dk

dxk
(1 − 4x)−

1
2

∣∣∣∣
x=0

= 1

k!

1

2

(
1 +

1

2

)
· · ·
(
k − 1

2

)
4k = (2k)!

k!2
. (39)

Squaring the generating function gives

1

1 − 4x
=

∞∑
k=0

∞∑
l=0

(
2k

k

)(
2l

l

)
xk+l =

∞∑
n=0

xn
n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
(40)

where n = k + l. Comparing equation (40) with the geometric series

1

1 − 4x
=

∞∑
n=0

xn4n (41)

completes the proof.
The aforementioned contribution (35) becomes more familiar by the approximation

(4j (2j)!)2

(4j + 1)(4j)!
=

√
π

2

�(2j + 1)

�(2j + 3/2)
≈ 1

2

√
π

2j + 1
. (42)

The averaged L2 norms finally become

〈‖Qkk‖2〉 � 4π

N2

{
2N
N+1 , CUE
N
N+2

(
2 + 1

2

√
π
N

)
, COE.

(43)

An interesting point to remark here is that the COE eigenstates are somewhat more localized
than the CUE eigenstates, since their averaged L2 norm contains a further contribution of
orderN− 5

2 . But in contrast to the fourth moment (32)—it might be understood as the averaged
IPR with respect to the |jm〉 basis—the difference vanishes in the classical limit N → ∞.
However, for both ensembles the averaged squared L2 norms are roughly twice as larger as
for a constant distribution on the sphere.

For the skew Husimi eigenfunctions, the averaged L2 norms can be calculated from the
relation

4π =
∫

d�|〈θ, ϕ|θ, ϕ〉|2 =
∫

d�

(∑
k

|〈θ, ϕ|φk〉|2
)2

=
∑
k

‖Qkk‖2 +
∑
i 
=k

‖Qik‖2 (44)

which leads to

〈‖Qik‖2〉 = 4π −N〈‖Qkk‖2〉
N(N − 1)

. (45)

Introducing the averages of the diagonal ones, we find for CUE

〈‖Qik‖2〉 = 4π

N2

N

N + 1
. (46)
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Figure 3. Return probability of the approximate resonance eigenfunction from λ ≈ −i0.75
(number 4 in table 1; see also figure 2(a)): (a) the amplitude shows an exponential decay of
(0.75)n (dashed) for small n, while the phase (b) evolves like −nπ2 .

For the COE one obtains the same result up to an order of N− 7
2 ,

〈‖Qik‖2〉 � 4π

N2

N2

(N − 1)(N + 2)

(
1 − 1

2N

√
π

N

)
= 4π

N2

N

N + 1
+ O(N− 7

2
)
. (47)

10. Comparison of quantum and classical eigenfunctions

It has been shown in [37] that quantum quasiprobability propagation looks classical if phase-
space resolution is blurred such that Planck cells are far from being resolved. As a result, if
we truncate the Husimi matrix to coarse phase-space resolution, it becomes almost equal to
the truncated Frobenius–Perron operator, TFT−→

N→∞
TPT , where

T =
lmax∑
l=0

l∑
m=−l

∣∣Yml ) (Yml ∣∣ (48)

denotes the truncation projector restricting the ‘classical’ Hilbert-space dimension to M =
(lmax + 1)2. In the following we choose M � N2, and thus have TFT ≈ TPT . Again, we
consider the classical propagator. Let |w) = T |w) be an approximate resonance eigenfunction
with stabilized eigenvalue λ of TPT . Since the stabilized eigenvalues reflect spectral
properties of the non-truncated Frobenius–Perron operator, λn must be a stabilized eigenvalue
of TPnT , at least if M is chosen large enough. This property does not hold for non-stabilized
eigenvalues, since TPnT 
= (TPT )n. Choosing the approximate resonance eigenfunctionL2

normalized, the return probability becomes (w|P|w) = λn for small n (see figure 3). Note that
the latter property makes sense only if we consider approximate resonance eigenfunctions,
because the singular resonance eigenfunctions are not square integrable. Figure 3 shows the
return probability of the approximate eigenfunction from stabilized eigenvalue λν ≈ −i0.75
(number 4 in table 1). The moduli as well as the phases coincide with λnν for about 20 iterations.
Beyond this time quantum fluctuations become visible.

Since TFT ≈ TPT , we expect TFnT ≈ TPnT for small n. Now we can replace the
Husimi propagator by its diagonal representation (17),

λn ≈ (w|Fn|w) = N

4π

∑
ik

(w|Qik) e−in(φi−φk)(Pik|w). (49)
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Figure 4. (a) Overlaps of Husimi eigenfunctions with the approximate resonance eigenfunction
from λ ≈ −i0.75 (number 4 in table 1). (b) Smoothed overlaps (solid) in comparison with the
Lorentzian distribution (dashed) corresponding to λ4 = −i0.75 (see text).

The return probability becomes a double sum of overlaps of quantum and classical
eigenfunctions. For large N the Husimi eigenphases are quite dense in the interval [0, 2π).
Outside an interval around the Husimi eigenphase ω = 0 wherein level repulsion of Floquet
eigenphases becomes perceptible, the spectral density of differencesφi−φk is almost constant,
N2/2π . It is convenient to replace the sum by a continuous integral over the Husimi
eigenphases, where the overlaps can be replaced by a continuous function as a smoothed
distribution of overlaps,

λn ≈ N

4π

∫ 2π

0
dω (w|Qik)(Pik|w)�ω(ω) e−inω. (50)

In the classical limit we let first N −→ ∞ and then M −→ ∞. In this limit the
foregoing result becomes valid for all n. The smoothed overlaps are given by the inverse
Fourier transform of λn as

(w|Qik)(Pik|w)�ω(ω)−→
N→∞

2

N

1 − |λ|2
1 + |λ|2 − 2|λ| cos(ω − argλ)

(51)

which is a periodic ‘Lorentzian’ displaced by the phase of λ and of width −ln|λ| [38] (see
figure 4).

The smoothing is done by a convolution with a sinc function which naturally results
from a truncated Fourier transform. Here the time restriction is |n| � N , where N ≈ 20
corresponding to the validity of the return probability of the approximate eigenfunction
(figure 4). For simplification the integral is restricted to the interval between the first zeros of
the sinc function,

f
�ω
(ω) ∝

∫ ω+ π
N

ω− π
N

dω′ sin(Nω′)
ω′ f (ω − ω′). (52)

A simple argument connects quantum scars with Ruelle–Pollicott resonances. Classical
resonance eigenfunctions are scarred along unstable manifolds (or stable manifolds for
backward time propagation). Quantum eigenfunctions which strongly overlap with resonance
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Figure 5. Grey-shade coded phase-space plots of the diagonal Husimi eigenfunctions (a) number
30 and (b) number 11 of table 3. The Husimi function in (a) is strongly scarred in phase-space
regions, where the approximate resonance eigenfunctions are scarred (figure 2). The Husimi
function in (b) is also scarred in the same phase-space regions, but shows more structure all over
the phase space than the function in (a).

eigenfunctions have to be scarred as well. This is an important result, because it explains
scarring of quantum eigenfunctions not only on periodic orbits, but also along stable and
unstable manifolds [8, 10, 11]. In particular, for the kicked top this has been observed in [9].
For instance, we consider the skew Husimi eigenfunction which shows the largest overlap
with the classical approximate eigenfunction considered before. The corresponding diagonal
Husimi eigenfunctions (numbers 11 and 30 in table 3) plotted in figure 5 are scarred in the same
phase-space regions, where the approximate resonance eigenfunctions are scarred (figure 2),
while the difference of their Floquet eigenphases (φ30 − φ11 = −1.586) is close to the phase
of the resonance

(
argλ4 = −π

2

)
.

11. Resonance corrections of averaged phase-space overlaps

In the preceding section a qualitative explanation of the connection between resonances and
quantum eigenfunctions was given, but now we are interested in more quantitative results. To
this end, we consider transition rates of coherent states in the classical limit

N

4π
|〈θ, ϕ|Fn|θ ′, ϕ′〉|2 −→

N→∞
δ((q, p)− Mn(q ′, p′)). (53)

This relation becomes obvious if one suggests that coherent states are wavefunctions most
strongly localized on phase-space points. We now consider the return probability and integrate
over the phase space,

N

4π

∫
d�|〈θ, ϕ|Fn|θ, ϕ〉|2 −→

N→∞

∫
d�δ((q, p)− Mn(q, p)) (54)

where the rhs is the trace of the Frobenius–Perron operator [41]. We remark here that the
integral on the rhs leads to a sum of contributions from periodic orbits, which is an important
connection between scars on periodic orbits and the results of our paper. On one hand, periodic
orbits, in particular the weakly unstable ones, contribute to the trace of the Frobenius–Perron
operator, i.e. influence the resonances, and on the other hand, scars typically appear around
weakly unstable periodic orbits. On the lhs of (54) we introduce the diagonal representation
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of the Floquet operator and get

N

4π

∫
d�|〈θ, ϕ|Fn|θ, ϕ〉|2 = N

4π

∫
d�

∣∣∣∣∣
∑
k

|〈θ, ϕ|φk〉|2 e−inφk

∣∣∣∣∣
2

= N

4π

∑
ik

‖Qik‖2 e−in(φi−φk). (55)

Fourier transformation of the latter expression leads to a sum of δ functions weighted by L2

norms,
∞∑

n=−∞

einω

2π

∑
ik

‖Qik‖2 e−in(φi−φk) =
∑
ik

‖Qik‖2δ(ω − (φi − φk)). (56)

Due to the arguments in the preceding section we expect that for finite N, relation (53) is valid
for finite times |n| � N . The validity of semiclassical methods is guaranteed for times up to
the Ehrenfest time, where the number of fixpoints coincides with the number of Planck cells.
Thus we identify N as Ehrenfest time. The truncated Fourier transform leads to a sum of
smoothed δ functions (52). Using (54), we get

‖Qik‖2
�ω
(ω) = 4π

N

N∑
n=−N

TrPn einω

2π
(57)

which we may call smoothedL2 norms. The next step is to drop the stationary eigenvalue 1 in
the traces of the Frobenius–Perron operator. The Fourier transform of this eigenvalue leads to
a δ function in the limit N → ∞ which is not of interest here. In the Husimi representation
we identify the eigenvalue 1 as the sum of squared L1 norms of Husimi eigenfunctions.
This is easily seen from the Husimi matrix in the basis of spherical harmonics. In the
first row and column is only one non-vanishing matrix element

(
Y 0

0

∣∣F∣∣Y 0
0

) = 1. Note
that Y 0

0 is a constant function on the sphere and therefore proportional to the stationary
density, i.e. it is the eigenfunction from eigenvalue 1. Introducing the diagonal representation
of the Husimi propagator (17), one identifies N

4π

∑
k

(
Y 0

0

∣∣Qkk

)(
Pkk
∣∣Y 0

0

) = 1. Note that(
Y 0

0

∣∣Qik

) = (
Pik
∣∣Y 0

0

) =
√

4π
N
δik, where

(
Y 0

0

∣∣Qkk

) ∝ ‖Qkk‖1. For n = 0 the trace of the
Frobenius–Perron operator is not defined. The integral on the lhs of (54), however, is defined
and gives the leading order contribution N. We replace the traces by sums of the Ruelle–
Pollicott resonances (10) and make use of the symmetry TrP−n = TrPn,

‖Qik‖2
�ω
(ω) = 2

N − 1

N
+

4

N

N∑
n=1

∑
ν

λnν cosnω. (58)

Note that the eigenvalue 1 is also dropped in the leading order term.
To get a mean value 〈Qik〉(ω) from the smoothedL2 norm to a mean value 〈‖Qik‖2〉�ω(ω)

we have to divide by the smoothed level density of the Husimi spectrum. The density of the
Husimi spectrum is identified as the density–density correlation function with respect to the
Floquet eigenphases,

ρH (ω) =
∑
ik

δ(ω − (φi − φk)). (59)

This spectral density can be calculated from the time Fourier transformation of the form factor.
The smoothed density is given by a truncated Fourier transformation as

ρ�ω(ω) = N2

2π

(
1 +

2

N2

N∑
n=1

|TrFn|2 cos nω

)
(60)
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Figure 6. (a) Smoothed and (b) averaged L2 norms of skew Husimi eigenfunctions, and
(c) smoothed (Husimi) spectral density.

where we have separated the leading order term (n = 0). It is known that the form factor is
small as the time n is small (〈|TrFn|2〉 = n or ≈ 2n for CUE or COE, respectively). Thus,
the summation up to the Ehrenfest time, which is much smaller than N, becomes negligible
and the smoothed spectral density is nearly constant. Before we write the final result,
we consider the truncated Fourier transformation of the resonances. Since the moduli of
the resonances are smaller than 1, the summations in (58) converge quickly so that we can
replace the Ehrenfest time N by ∞,

〈‖Qik‖2〉(ω) = 4π

N2

(
N − 1

N
+

2

N

∑
ν

∞∑
n=1

λnν cos nω

)
. (61)

The constant term coincides with the RMT result (47), where N
N+1 = N−1

N
+ O(N−2). The

resonances lead to an 1
N

(alias h̄) correction in the form of overlapping Lorentz distributions
(see (51)). In the classical limit the resonance corrections vanish as N goes to infinity. However,
for finite dimension we see non-universal corrections which are related to the chaoticity of the
system. If, for instance, the classical dynamics is strongly chaotic such that all correlations
vanish after one iteration, the resonances are close to the origin and the averaged L2 norms
show no deviations from the RMT result.

Before discussing numerical results, we should discuss some preliminaries. The kicked
top is known to have a mixed phase space. Although elliptic islands of stable periodic
orbits are much smaller than the Planck cell, bifurcations can be responsible for further
localization phenomena which are sometimes called super scars [39]. But in contrast to
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Figure 7. (a) Semiclassical predictions computed from (i) eight stabilized eigenvalues (dotted),
(ii) eigenvalues with |λ| > 0.45 (solid) and (iii) almost all eigenvalues of the truncated Frobenius–
Perron matrix (dashed). The semiclassical prediction is mainly influenced from a few eigenvalues
of large moduli. (b) Comparison of the semiclassical prediction (iii) (dashed) with averaged L2

norms of skew Husimi eigenfunctions (solid). (c) Logarithmic plot of eigenvalues of the truncated
Frobenius–Perron matrix (ln|λ| versus argλ). The peaks in (a) are associated with at least one
eigenvalue of large modulus.

the resonances, bifurcations strongly influence spectral correlations. This means that peaks
resulting from bifurcating orbits are higher for the smoothed L2 norms than for the averaged
L2 norms. Thus, we are able to distinguish between localization phenomena of resonances
and bifurcations. The smoothing is again done by a convolution with a sinc function (52).
From the contributions of the diagonal Husimi eigenfunctions, we have neglected the squared
L1 norms which correspond to the stationary eigenvalue.

Figure 6(a) shows the smoothed L2 norms, figure 6(b) shows the mean L2 norms and
figure 6(c) shows the smoothed spectral density. In figure 6(a) we see a couple of peaks
at the Husimi eigenphases ω = 0, π,±π

2 and ± 2π
3 . Figure 6(c) shows remarkable peaks

at the positions ω = ± 2π
3 and after division we see in figure 6(b) that these peaks are

suppressed, while the other peaks still have the same magnitude. Comparison with the
semiclassical prediction is shown in figure 7. Due to the fact that stabilized eigenvalues
representing the resonances are of largest moduli, we expect that the semiclassical prediction
is almost independent of the set of eigenvalues as well as all stabilized ones are taken into
account. In figure 7(a) the semiclassical prediction is computed from (i) eight stabilized
eigenvalues, (ii) eigenvalues of modulus larger than 0.45 and (iii) almost all eigenvalues
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Table 2. Husimi eigenphases, L2 norms of most strongly localized skew Husimi eigenfunctions
and the corresponding diagonal Husimi eigenfunctions (enumeration in table 3). Due to the
rescaling, the RMT average is nearly 1.

No [φi − φk] N2

4π ‖Qik‖2 No No

1 0.022 93 4.879 04 9 8
2 0.029 95 2.172 52 4 2
3 0.036 90 2.127 95 8
4 0.125 04 2.262 66 4 1
5 0.660 08 2.532 47 8 4
6 0.690 02 2.149 43 8 2
7 0.951 40 2.074 55 32 8
8 1.585 66 3.280 86 30 11
9 1.613 24 2.072 95 30

10 1.630 71 2.313 85 30
11 1.933 14 2.771 64 16 9
12 1.956 07 3.479 30 16 8
13 2.122 24 2.037 52 16
14 2.418 53 2.012 26 21
15 2.616 15 2.080 38 16 4
16 2.646 10 2.045 06 16 2
17 2.924 33 2.261 89 21 5
18 2.976 84 2.211 63 8
19 2.996 90 2.057 25 9
20 3.019 83 2.739 44 8
21 3.102 87 2.105 37 23 9
22 3.112 30 3.053 49 24 8
23 3.118 57 2.860 21 17 30
24 3.125 80 2.555 65 23 8
25 3.135 23 2.480 17 24 9

of the truncated Frobenius–Perron matrix. Comparison of (i), (ii) and (iii) shows that the
semiclassical prediction is mainly influenced from a few classical eigenvalues of large moduli
which represent the resonances. In figure 7(b) we compare the semiclassical prediction (iii)
with the quantum result. In particular, for the peaks we find a very good agreement. This
result shows that the probability of finding strongly overlapping eigenfunctions becomes large
if the differences of their eigenphases coincide with the phase of a leading resonance, i.e.
resonance of large modulus. In comparison with the background the peaks are small (a few
per cent). However, we show in the next section that scarred eigenfunctions are mainly
responsible for the peaks. The eigenvalues of the Frobenius–Perron matrix (figure 7(c)) are
plotted logarithmically (ln |λ| versus argλ). These are easily associated with the peaks in
figure 7(a). It should be remarked that there is no eigenvalue of large modulus which
corresponds to the small peaks at ω = ± 2π

3 in figure 6(a).

12. Scarred eigenstates of the kicked top

In this section we consider single eigenfunctions and verify the statement that phase differences
of strongly overlapping eigenfunctions coincide with phases of leading resonances. Due to
the Schwarz’ inequality, we first check that skew Husimi eigenfunctions with large L2 norms
are composed of scarred diagonal Husimi eigenfunctions. In table 2 we find 25 L2 norms of
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Figure 8. (a)L2 norms of diagonal Husimi eigenfunctions versus Floquet eigenphases. (b) 530L2

norms of most strongly localized skew Husimi eigenfunctions. Note the frequent appearance close
to the phases of resonances.

Table 3. Floquet eigenphases and L2 norms of most strongly localized diagonal Husimi
eigenfunctions. Note that the RMT average is about 2.034.

No φk
N2

4π ‖Qkk‖2 No φk
N2

4π ‖Qkk‖2

1 0.112 80 3.163 42 17 2.955 22 2.691 66
2 0.207 89 2.913 29 18 3.164 45 2.731 81
3 0.232 00 2.634 25 19 3.341 45 2.641 67
4 0.237 84 3.442 06 20 3.624 19 2.803 08
5 0.395 07 2.887 19 21 3.753 93 3.375 01
6 0.468 42 2.984 15 22 3.845 85 2.759 31
7 0.644 37 2.981 54 23 4.023 72 2.701 90
8 0.897 92 7.195 29 24 4.068 81 2.713 14
9 0.920 85 4.321 35 25 4.154 09 2.685 84

10 1.416 02 2.673 99 26 4.366 18 2.790 03
11 1.422 31 2.922 72 27 4.919 79 2.819 94
12 1.722 57 2.795 65 28 5.014 85 2.856 68
13 1.821 72 2.860 09 29 6.112 81 2.768 55
14 1.985 72 3.390 27 30 6.119 84 6.270 44
15 2.332 26 2.692 46 31 6.219 27 2.797 05
16 2.853 99 4.367 32 32 6.229 70 2.861 70

most strongly localized skew Husimi eigenfunctions, their eigenphases and the corresponding
diagonal Husimi eigenfunctions (the numbers correspond to the enumeration in table 3). Due
to the symmetry Qik = Q∗

ki we have restricted the eigenphases as 0 < ω � π . The 32 most
strongly localized diagonal Husimi eigenfunctions are presented in table 3. Comparison of
both tables proves that all skew Husimi eigenfunctions considered are composed of at least one
scarred diagonal eigenfunction. In figure 8(a)L2 norms of all diagonal Husimi eigenfunctions
are shown, while in figure 8(b) we see 530 (of a total 1.6 × 105) L2 norms of most strongly
localized skew Husimi eigenfunctions. Due to the results of section 11, localized skew Husimi
eigenfunctions appear frequently around the resonance phases. Interestingly, there are only
two remarkable eigenfunctions (numbers 11 and 12 in table 2) around the Husimi eigenphases
ω = ± 2π

3 . Moreover, in both cases one of the underlying diagonal Husimi eigenfunctions is
number 16 in table 3. Further investigation of this eigenfunction has shown that it is strongly
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scarred on two bifurcating orbits of periods 1 and 3. It seems that we found a super scar
corresponding to a period-tripling bifurcation.

13. Conclusion

In conclusion, phase-space localization of quantum (quasi-)eigenenergy functions, say
scarring, is explained not only by periodic orbits, but also by Ruelle–Pollicott resonances
and their corresponding resonance eigenfunctions. In particular, we found the interesting
result that quantum Floquet eigenfunctions are pairwise localized in the same phase-space
regions if the difference of their (quasi-)eigenenergies coincides with the phase of a leading
resonance, i.e. resonance close to the unit circle. But note that this is a statistical statement
which does not make a prediction for individual eigenstates. Semiclassical theory gives no
hint on whether there are a few strongly localized or many weakly localized eigenfunctions
which are responsible for the Lorentzian peak. However, the semiclassical and numerical
results of the averaged L2 norms are in good agreement.

The correspondence between scars around periodic orbits described by Heller and the
results of this paper might be understood as follows: resonances can be computed by a so-
called cycle expansion, where resonances appear as roots of a polynomial whose coefficients
are calculated from contributions of short periodic orbits (pseudo-orbits) [40, 41]. On one
hand, scars typically appear around weakly unstable periodic orbits and on the other, these
weakly unstable orbits mainly induce the cycle expansion.

Although the kicked top has a mixed phase space, localization effects of stable orbits or
bifurcations can be neglected if such phase-space structures are not resolved by the Planck
cell. Further investigations are needed for the understanding of the so-called super scars which
are related to bifurcations.
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